2012 TEEE/IPSJ 12th International Symposium on Applications and the Internet

Survey of network metrology platforms

Anne-Cécile Orgerie*T, Paulo Gongalves*, Matthieu Imbert*, Julien Ridoux' and Darryl Veitch'
*ENS de Lyon - INRIA Rhéne-Alpes - LIP (UMR CNRS, INRIA, ENS, UCBL)
46 allée d’Italie 69364 Lyon Cedex 07 - France
Email: annececile.orgerie @ens-lyon.fr, paulo.goncalves @inria.fr, matthieu.imbert @inria.fr
t Department of Electrical & Electronic Engineering - The University of Melbourne
Victoria 3010 - Australia
Email: jridoux @unimelb.edu.au, dveitch@unimelb.edu.au

Abstract—Internet services rely on communication networks to
serve billions of end-users worldwide. Metrology platforms are
used to assess the Quality of Service of such networks. This work
reviews and classifies the existing metrology equipment and meth-
ods. In particular, we provide elements of comparison between
different packet capture techniques and clock synchronisation
methods, two essential building blocks of metrology platforms.

Keywords- Clock synchronisation; packet timestamping; packet
capture; network metrology platform

I. INTRODUCTION

The ever-growing appetite of new applications for network-
ing resources has not stopped since the Internet was built in
the early-80s. In particular, emerging real-time applications
such as voice over IP, online video games or financial market
applications require high Quality of Service such as low
latency and low jitter. That is why network service providers
constantly measure the quality of their infrastructures by using
dedicated metrology equipment.

Network measurements allow researchers and providers to
obtain a comprehensive view on the usage and quality of
service of networking infrastructures. Yet, the accuracy of
these measurements greatly relies on network synchronisation
performance. Indeed, the measured parameters are tightly
linked to timestamping and timekeeping operations.

Accurate packet timestamping is a key challenge. First, the
timestamping resolution should be fine enough to capture all
the traffic. For instance, on a 10 Gbps link at full speed,
if you are using timestamps with microsecond resolution,
with 64-bytes packets (minimum packet size), you will have
roughly 20 packets for the same timestamp value. In this
case, the measurement equipment should have at least a 50 ns
granularity in order to obtain different timestamps for every
packet.

Secondly, networking devices are geographically distributed
by nature and thus, synchronisation among them is hard to
achieve over large distances. Tight synchronisation is however
required to measure one-way latencies between two end-hosts
for example. In order to obtain reliable metrology systems,
it is essential to identify and consider all the sources that
can influence the network measurement accuracy. Then, it is
required to eliminate or precisely estimate (with models and
experimental validations) these induced latencies to reach an
acceptable level of synchronisation.

978-0-7695-4737-4/12 $26.00 © 2012 IEEE
DOI 10.1109/SAINT.2012.41

220

This paper aims at identifying the possible sources of
inaccuracy in network monitoring tools, and to explore, clas-
sify and compare available network metrology platforms.
Section II introduces the background. Section III reviews the
available packet capture systems, while Section IV presents the
clock synchronisation methods. Section V provides insightful
comments to design an accurate and inexpensive metrology
platform hence easy to deploy at a large scale. Section VI
concludes this work and proposes future directions.

II. BACKGROUND

Network measurement is a matter of concern since the emer-
gence of network themselves. Commonly, three time-related
parameters are measured to determine the QoS delivered by
an infrastructure:

1) throughput: the average rate of successful data delivery
over a given time slot, usually measured in bits per
second;

2) latency: the time delay either one-way (from source to
destination) or round-trip (from source to destination and
back again);

3) jitter (or packet delay variation): the difference in end-
to-end time delay between packets of a flow (any lost
packets are ignored).

To compute (or more exactly measure) these parameters,
people could put monitoring equipment on each network
device (router or switch) of the path followed by packets
to compute the time spent in each portion of the network.
This solution would provide a precise view of the QoS of the
whole network, but it is highly impractical, and prohibitive
in terms of equipment time and required processing time for
the obtained data. Commonly, the monitoring equipment is
installed at each end host, and only end-to-end measurements
are performed.

The computation of the previously detailed time-related QoS
parameters requires the estimation for each packet of the time
they spend in the network. Consequently, it is necessary to
timestamp packets when they are transmitted and when they
are received. This timestamping operation is typically done
by packet capture mechanisms to happen as close as possible
to the actual transmission and receiving dates in the Network
Interface Card (NIC). Indeed, if timestamping happens in the
host’s application layer, the measurements include the time

IEEE
computer
psouety

[Model

| Bandwidth | Synchronisation | Clock precision [Price category |

DAG cards - Endace [1] 10 Gbps GPS or CDMA 7.5 ns B

COMBOI-10G4TXT - Liberouter [2] 10 Gbps GPS not known C

OmniAdapterTM 10G - WildPackets [3] 10 Gbps GPS or CDMA 7.5 ns C

TurboCap - Riverbed [4] 1 Gbps software 1 us B

GigaStor 10Gb Wire Speed - Network Instruments [5] 10 Gbps GPS 150 ns C

1S4320E Packet Capture Card - Sysmate [6] 10 Gbps GPS 100 ns not known
TABLE I

COMPARISON OF THE HARDWARE-BASED PACKET CAPTURE SYSTEMS.

that packets have spent waiting to be processed by the host and
not just the time that they have spent within the network. The
first challenge is thus to have at our disposal efficient capture
packet mechanism 1) to capture packets as close as possible
to the transmitting and receiving times, and 2) to timestamp
packets without incurring delay during this processing.

With a packet capture system at each end of its route, the
packet is timestamped at the source and at the destination.
But, these two devices do not have the same clock (i.e. the
entity telling the time on the device): each device has its own
clock in communication networks. Therefore, it is essential to
synchronise the source’s clock and the destination’s clock to
obtain accurate one-way measurements as they are computed
by making the difference between two absolute clock reading
values.

In the following, we firstly detail the available solutions
for network packet capture. Subsequently, we present the
issue of clock synchronisation in networks and the applicable
solutions to obtain accurate timestamps. One should notice
that timestamp precision and timestamp accuracy are strictly
different although the accuracy cannot exceed the granularity.
The precision refers to the granularity provided by the clock
(i.e. time unit in which the time is provided), while the accu-
racy is determined in comparison with an absolute reference
clock such as an atomic clock for instance (i.e. it represents
the maximum difference between the clock and the absolute
time).

III. PACKET CAPTURE SYSTEMS

Among the proposed solutions found in the literature to
monitor network infrastructures, we can distinguish two main
categories: the hardware solutions relying on dedicated hard-
ware often linked to GPS (Global Positioning System) anten-
nas and the software solutions relying on standard Network
Interface Cards (NICs) and appropriate dedicated software.

The most emblematic solutions of these two categories
are on one side the solutions based on Endace DAG (Data
Acquisition and Generation) cards with GPS, and the solutions
based on standard NICs with NTP (Network Time Protocol)
and additional packet capture software on the other side.
Figure 1 illustrates these different approaches and their issues.
DAG cards can reach a 10 ns accuracy [1], whereas NTP-
based solutions only provide millisecond accuracy [7].

While hardware solutions provide a high accuracy, they are
expensive and often require GPS antennas and thus, cannot be
easily deployed. On the other hand, software solutions present

221

Software Hybrid Hardvyare
solutions ; solutions
(NIC + NTP) SOlUtONS (pAG 4+ Gps)
» ACCURACY
<% DEPLOYABILITY
Fig. 1. Different available solutions for packet capture

a poor accuracy, but they are cheaper and more easily deploy-
able as they do not require particular hardware. The literature
provides also some hybrid solutions based on programmable
NICs and special firmware for network measurements. The
synchronisation of these cards can then be based either on
GPS or on network synchronisation protocols such as NTP.

A. Hardware solutions

Table I summarizes the dedicated hardware currently avail-
able in the market and the main characteristics of each card:
supported bandwidth, synchronisation method, internal clock
precision and price category'.

The hardware-based solutions massively rely on GPS syn-
chronisation. This enables them to achieve a great accuracy
for their internal clock, typically bellow the micro-second. As
mentioned earlier, these dedicated solutions are in majority
accurate but expensive, which is a major drawback in the
design of a scalable solution for network metrology. Moreover,
contrary to what is written in specification sheets, some of
these dedicated cards do not support full-speed transfers and
suffer from packet losses at high rates [8].

B. Software solutions

In contrast with the expensive and proprietary hardware-
based solutions, numerous software-based solutions have been
implemented and some of them are open-source. Some of
the most recent and common ones are presented in Table II.
These solutions make use of commodity network cards (NICs)
and packets are generally captured at the user-level. The
high number of such solutions shows that network metrology
is a matter of concern for numerous applications, and that
hardware-based solutions are not suitable in every case.

The numerous software-based solutions find their legitimacy
on the high cost and scalability issues of hardware-based
systems. Yet, these software solutions also suffer from severe
drawbacks such as high CPU usage, low accuracy and packet

IPrice categories are defined as follows. A: from 0 to 999 USD; B: from
1,000 to 9,999 USD; C: from 10,000 to 100,000 USD.

losses at high speeds. It would have been interesting to
compare the CPU usage and packet losses for each solution.
Yet, each paper of the literature provides results based on
different packet sizes and different traffic rates [9], [10], [8].

[Name | Timestamp precision | Licence |
Libpcap - tcpdump [11] s BSD
PF_RING [12] s GNU GPL
nCap [10] s proprietary
Libpcap-based solution [13] ns not known
Zero-p [14] us not known
DiCAP [9] us not known
DashCap [15] us not known
Libtrace [16] ns free

TABLE II
COMPARISON OF THE SOFTWARE-BASED PACKET CAPTURE SYSTEMS.

Most of the software-based solutions rely on the libpcap
library which provides a timestamp format with microsecond
resolution. So, the timestamping accuracy of these solutions
cannot go beyond this limit. Moreover, they all use the host
computer clock to timestamp the packets, so the timestamping
accuracy depends also on the computer clock’s accuracy which
often relies on NTP (Network Time Protocol) for its syn-
chronisation. NTP achieves a millisecond accuracy [17] only.
Another inaccuracy source comes from the fact that packets
are treated in user-space and transmission delays from the NIC
and from the kernel-space are highly unpredictable [10]. Some
of these implementations have been developed for the purpose
of research projects and are not available on the market.

C. Hybrid solutions

Hybrid solutions try to get the best of both worlds: accuracy
and high performance from hardware-based solutions by using
programmable network equipment which will be responsible
for the packet capture; and deployability and low cost from
software-based solutions that will be used to develop drivers
for these network cards. Some of these solutions are presented
in Table III.

The ANME box has been developed in the context of the
OneLab initiative and is based on a VHDL-programmable
ARGOS card. This card is linked to a GPS receiver to obtain a
high clock accuracy. The Myricom solution is based on Myri-
10G network adapters and on the Sniffer/0G firmware which
is installed on these cards and responsible for packet capture.
The Intel solution relies on the Precision Time Protocol (PTP)
and thus, requires to be linked to a PTP master to get
synchronisation.

The ANME box presents a better clock precision, but this
precision comes from the usage of a GPS receiver which
restricts the scalability and deployability of this solution. On
the other hand, the Myricom and Intel cards offer a lower clock
precision which can be an issue for high-speed timestamping.

In fact, any NIC can be used to perform network metrology
as demonstrated with the software-based solutions. Yet, non-
specialized NICs require software implementations to handle
packet capture and they offer a lower timestamping accuracy.

222

Programmable devices can present an interesting compromise
between accuracy and scalability. The hybrid solutions pre-
sented here rely on such programmable devices and come with
firmware performing packet capture. Yet, the solutions which
are not based on GPS synchronisation still lack accuracy to
deal with high speed traffic.

IV. CLOCK SYNCHRONISATION METHODS

Timestamping for metrology purpose is a challenging issue
that often requires synchronisation between the measurement
devices. Usually, the devices are synchronised with refer-
ence clocks (e.g. GPS receiver, atomic clocks), and thus, the
accuracy of the device’s clocks depends on their precision,
the precision of the reference clocks and the synchronisation
method (evaluation of the latency). This synchronisation is
complicated by the latency’s asymmetry between any two
network devices which is mainly caused by network conges-
tion [21].

A software clock is based on a reference clock (which can
be distant) and a local hardware counter which relies on an
oscillator. The reference clock is accessed periodically through
time servers using dedicated protocols like NTP or PTP for
instance. The period of these communications is called the
polling interval. The synchronisation to the reference clock
is used to correct the natural drift of oscillators. The local
hardware counter counts the ‘ticks’ of the oscillator at a
given frequency. To describe it simply, the clock produces
timestamps by converting the counter into seconds and adding
a constant to set the time origin.

In the following, we present the most commonly used
methods for network synchronisation in distributed systems.
Other less generic solutions have been proposed to measure
network latency without synchronisation like sending pairs of
probe packets [22].

A. Global Positioning System (GPS)

The Global Positioning System comprises 24 satellites, and
each of them has an atomic clock providing accurate time. On
Earth, the time signals transmitted by the GPS satellites are
collected by GPS receivers. The receivers then provide a one
pulse-per-second output signal with accuracy on the order of
few tens of nanoseconds for the more accurate receivers [23].

The GPS receivers can be used for clock synchronisation
but they come along with high costs and efforts. Indeed,
they require antennas to be mounted outside and with a large
view angle to the sky (seeing at least 4 GPS satellites),
while measurement devices are close to the infrastructure
often located in server rooms or at the basement. These
two issues prevent GPS solutions (i.e. one GPS per network
device) to be scalable. Yet, GPS receivers can be used within
synchronisation infrastructures as reference clocks.

B. Network Time Protocol (NTP)

The Network Time Protocol (NTP) is one of the oldest
still in-use Internet protocols. Thus, NTP implementations are
commonly available in most of the operating systems (OS).

[Name | Bandwidth | Network card [Synchronisation | Clock precision | Price category |
ANME box - OneLab [18] not known | ARGOS FPGA GPS 10 ns B
Sniffer10G firmware - Myricom [19] 10 Gbps Myri-10G card computer clock 500 ns A
Intel Ethernet Controller 1350 Driver [20] 1 Gbps Intel 1350 Card PTP 100 ns A

TABLE III
COMPARISON OF THE HYBRID PACKET CAPTURE SYSTEMS.

NTP is a distributed network clock synchronisation protocol. It
uses a hierarchical system where each level is called a stratum.
At the top, the Stratum-0 is constituted with reference clocks
such as GPS receivers, atomic clocks or radio clocks. These
reference clocks are directly linked to Stratum 1 NTP servers.
These Stratum 1 servers, also called time servers, are able
to answer the timing requests of Stratum 2 servers. At each
level, the servers discuss with several servers of the upper
level, and they also peer with other servers from the same
level to improve their clock accuracy [7]. For Unix-based
systems, the NTP clients use a daemon, called NTPd, which
runs continuously in user space. However, the system clock
(synchronised by using NTPd) is implemented in kernel space
to decrease the access latencies to the time values.

The synchronisation mechanism between a client and a
server is described in Figure 2. At t, (origin timestamp),
the client sends a packet to the server. The server receives
the packet at ¢, (receive timestamp). The server then sends
a message back to the client at ¢, (transmit timestamp). The
client receives this message at t; (destination timestamp). The
problem with these timestamps is that they are not produced
by the same clock and so, they do not have the same time
frame of reference. So, the client NTPd should compute the
difference between the two clock, which is called the offset,
in order to correct it.

t, t
Server] }

Client t V
to tq

Fig. 2. Synchronisation mechanism between a client and a server

If the one-way delays between the client and the server
on one side and the server and the client on the other side
are perfectly identical (symmetrical delays), then the offset is
defined as:

/ !/
ot et = (1) L =10 0

If the client and the server are perfectly synchronised, the
offset is null. NTP uses Formula (1) to compute the offset,
thus assuming that the one-way delays are symmetrical and
that clock time varies only linearly during the exchange. The
computed offset is then used as a correction to adjust the
system clock as shown on Figure 3.

The system clock takes as input a hardware counter and
the correction parameters provided by NTPd. To timestamp a

223

Hardware
counter

System NTPd Timestamp
clock
correction

Fig. 3. NTPd feedback loop

packet, NTPd uses the system clock as described in Figure 4.
When the packet has crossed all the protocol stack (in kernel
space), it is passed through a socket to the user space and only
then, it can be timestamped by NTPd.

get the packet NTPd adjust time
to timestamp it get time

User space

Kernel space

A
Protocol
stack Hardware
| counter
el Packet

Fig. 4. Timestamping process with NTPd

The main drawbacks of NTP are its poor accuracy and
stability that makes it unsuitable for high-performance net-
works. Clock synchronisation convergence can take many
hours using NTP, and NTPd frequency adjustments can cause
inconsistencies in timestamps [24].

C. Precision Time Protocol (PTP)

The Precision Time Protocol (PTP) aims at synchronising
clocks over a local area network (LAN). Each networking
equipment needs specific hardware to support this protocol.
It especially targets local systems which require an accuracy
higher than the one provided by NTP, but cannot afford the
cost of GPS receivers for every nodes.

PTP has been first standardized in 2002 under the de-
nomination [EEE 1588-2002. This synchronisation protocol
is based on a master-slave model. Each slave runs the best
master clock algorithm (BMC) to find its most suitable master.
The offset calculation is then computed by using the same
formula as NTPd (Formula (1)) and thus, with the same
assumptions. On LANs, PTP can achieve an accuracy in the
sub-microsecond range [25]. Yet, it is less robust to deviations
than RADclock [26].

D. Robust Absolute and Difference Clock (RADclock)

The Robust Absolute and Difference Clock (RAD-
clock) [27] is a system for network timing providing a dif-

ference clock to measure accurately the time elapsed between
two events, and an absolute clock to get timestamps (like
in the current system clocks). The timestamping process of
RADclock is performed in the kernel. Unlike NTPd, the
correction parameters are not directly applied to the system
clock. They are instead used only when a timestamp is
required, thus limiting the impact of frequent adjustments and
inconsistencies.

Several studies have shown the great robustness and accu-
racy of RADclock compared to other solutions like NTP or
PTP [27], [26], [28], [29]. Yet, it relies ultimately on NTP
Stratum-1 servers, which are the reference clocks for this
method.

[Method | Targeted networks [Required installation |
GPS Small number of nodes Antennas directed to
satellites
NTP All (not requiring too NTP Stratum-1 servers
much accuracy) (reachable from anywhere
over Internet)
PTP Local Area Networks PTP cards and PTP masters
RADclock All RADclock patch and NTP
Stratum-1 servers
TABLE IV

SUMMARY OF THE AVAILABLE SYNCHRONISATION METHODS

Table IV summarizes the available synchronisation proto-
cols with their required equipment. All methods require an
access to reference clocks located either on satellites, NTP
servers or PTP masters.

V. A DEEPER LOOK AT NIC-BASED TIMESTAMPING

As explained before, current hardware and software solu-
tions for packet timestamping present major drawbacks. Hy-
brid solutions using NIC-based timestamping could be a good
trade-off between accuracy and cost. Yet, the non-GPS-based
solutions, presented in Section III-C, lacks of accuracy. This
section presents some ideas and comments towards an effective
capture/timestamp hybrid system. Software-based metrology
solutions (i.e. using standard NICs) rely on the operating
system kernel to timestamp the arriving and departing packets.
This process is by definition inaccurate since these timestamps
do not reflect the actual arriving or departing time of the
packets. In particular, they depend on the time required by
the kernel to process the packets and to access the clock.

As shown in Figure 5, in the case of a packet timestamping
processed in the kernel, the packet has already crossed the
NIC by entering through the port and going out through
the NIC bus to reach the kernel space. In the case of a
timestamping in the user space (application space), the process
suffers from even more latencies since it has to use system
calls to access the values of the kernel clock, and the packet
has to cross the whole protocol stack in the kernel. Another
solution consists of timestamping packets in the NIC by using
the host’s clock (which can have a higher resolution than the
NIC’s clock). But this option has to deal with consequent
latencies induced by the NIC’s bus used for communication

224

between the host and the NIC. Reading the NIC time can take
over 1us which is significant for high-speed traffic, and this
delay is variable [30].

Synchronise

Kernel
p

Kernel clock
Kernel

loscillator

Tr‘mestamp\L
& 4

L Packet

Fig. 5. How packets are timestamped in the OS kernel

To obtain a timestamp close to the reality and get rid of host-
NIC communication latencies, packets should be timestamped
by the NIC in a similar way as PTP packets in PTP-enabled
NICs. In the case of a timestamping in the NIC, the inaccuracy
of timestamps comes from several major reasons as illustrated
in Figure 6:

1) the method used to synchronise the clock with an external
reference clock;
the precision of the internal clock itself;
the method employed to access the internal clock when
a timestamp is required (e.g. system call latency);
the method used to timestamp the packets (individually
upon arrival or periodically in batch).

2)
3)

4)

NIC

NIC

Reference clock

NIC clock

oscillator Timestamp

o

Packet

Fig. 6. How packets are timestamped in the NIC

The reference clock can be a GPS receiver, the host’s clock
or a distant clock server (e.g. NTP server or PTP master).
In the case of a synchronisation of the NIC’s clock with the
host clock, it is required that messages are passed through
the NIC’s interface bus (e.g. PCI bus). This process causes
latencies on the order of 1 us for a PCI bus2. For this reason,
it seems mandatory to timestamp packets in the NIC using the
NIC clock directly and not the host clock. However, NIC-host
communications are nevertheless required to keep both clocks
synchronised and to be able to provide timestamps that will
be usable in the host (i.e. converted in host time).

Zhttp://www.myricom.com/kb/index.php?title=What_is_the_timestamp_
accuracy_in_Sniffer10G?

Another major issue comes from the packet treatment pro-
cess of the NIC. Even if the NIC timestamps the packets, they
may not be timestamped upon arrival. This operation can be
dispatch-driven to deal with high-speed performance concerns
(reducing packet losses) [30], and is subject to latencies (up
to lus for a Myri-10G card for example according to the
specifications provided by Myricom?). As a result, several
packets may obtain the same timestamp even if they did not
arrive at the same time in the NIC and even if the timestamping
precision (granularity) was high enough to provide them with
different timestamps.

VI. CONCLUSION AND FUTURE WORK

As detailed in this paper, various solutions exist to monitor
the quality of service of high-speed networks. However, most
of the available solutions are either expensive and not scalable
but accurate and efficient, or inaccurate and presenting poor
performance but easily deployable. Thus, designing a network
measurement infrastructure which is accurate, inexpensive and
easy to deploy in comparison with existing solutions appears
as an unsolved challenge. Such an instrumentation platform
could benefit many users and applications. For instance, the
PetaFlow application [31], which is a distributed, interactive
and high-performance application, illustrates this instrumenta-
tion requirement by its highly time-sensitive nature.

Our future work aims at taking advantage of RADclock and
cheap network cards able to perform hardware timestamping
to propose an inexpensive and accurate metrology platform.
The major issue in designing such an instrumentation system
with these components is to deal with two different clocks
(i.e. host and NIC clocks) which are a priori not synchronised
as they are based on different oscillators. To validate this
new metrology platform, we will use the PetaFlow test-bed
which comprises a 1 Gbps dedicated trans-continental link
between France and Japan, and a state-of-the-art end-to-end
synchronised capture system using DAG cards.

ACKNOWLEDGMENT

The authors thank the partial support of the joint ANR-JST
project PetaFlow (CSD1-ANR-09-BLAN-0376-01) and of the
Inria Explorateur Grant awarded to Anne-Cécile Orgerie to
visit the University of Melbourne.

REFERENCES

DAG cards, Endace corporation. [Online]. Available: http://www.
endace.com/endace-dag-high-speed-packet-capture-cards.html

[2] COMBOI-10G4ATXT, Liberouter. [Online]. Available: http://www.
liberouter.org/card_comboi_10g4txt.php
[3] OmniAdapterTM 10G, WildPackets. [Online]. Available:

http://www.wildpackets.com/products/network_recorders/omniadapter_
analysis_cards/omniadapters_10g

TurboCap, Riverbed. [Online]. Available: http://www.riverbed.com/us/
products/cascade/wireshark_enhancements/turbocap.php

GigaStorTM 10 Gb Wire Speed, Network Instruments. [Online].
Available: http://www.netinst.com/products/observer/gigabit.html
IS4320E- Network 10 Gbps Ethernet Packet Capture Card, SYSMATE
CO LTD. [Online]. Available: http://www.sysmate.com/new2/eng/pro_
is4010.html

225

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

D. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482 —1493,
Oct 1991.

S. Ubik, “Gigabit ethernet packet capture tools,” CESNET, Tech. Rep.,
Sept. 2005. [Online]. Available: http://luca.ntop.org/ncap-evaluation.pdf
C. Morariu and B. Stiller, “DiCAP: Distributed Packet Capturing ar-
chitecture for high-speed network links,” in IEEE Conference on Local
Computer Networks (LCN), Oct. 2008, pp. 168 —175.

L. Deri, “nCap: wire-speed packet capture and transmission,” in Work-
shop on End-to-End Monitoring Techniques and Services, May 2005,
pp. 47 - 55.

tcpdump/libpcap. [Online]. Available: http://www.tcpdump.org/
PF_RING, ntop. [Online]. Available: http://www.ntop.org/products/pf_
ring/

P. Orosz and T. Skopko, “Software-Based Packet Capturing with High
Precision Timestamping for Linux,” in International Conference on
Systems and Networks Communications (ICSNC), 2010, pp. 381 —386.
X. Xu and Z. Li, “High-Speed Packet Capture Mechanism Based
on Zero-Copy in Linux,” in International Conference on Biomedical
Engineering and Informatics (BMEI), Oct. 2009, pp. 1 -5.

M. Dashtbozorgi and M. Azgomi, “A high-performance software so-
lution for packet capture and transmission,” in IEEE International
Conference on Computer Science and Information Technology (ICCSIT),
Aug. 2009, pp. 407 —411.

S. Alcock, P. Lorier, and R. Nelson, “Libtrace: A trace capture and
processing library,” University of Waikato, Hamilton, New Zealand,
Tech. Rep., May 2010.

L. De Vito, S. Rapuano, and L. Tomaciello, “One-Way Delay Mea-
surement: State of the Art,” IEEE Transactions on Instrumentation and
Measurement, vol. 57, no. 12, pp. 2742 2750, Dec. 2008.

ANME (Advanced network monitoring equipment) box,
OneLab. [Online]. Available: http://www.onelab.eu/index.php/services/
testbed-components/anme-box.html

Myricom Sniffer]0G. [Online]. Available: http://www.myricom.com/
support/downloads/sniffer.html

Intel Ethernet Controller I350. [Online]. Available: http://www.intel.
com/Assets/PDF/prodbrief/1350_Family_Product_Brief_v001.pdf

N. Simanic, R. Exel, P. Loschmidt, T. Bigler, and N. Kero, “Compen-
sation of asymmetrical latency for ethernet clock synchronization,” in
International IEEE Symposium on Precision Clock Synchronization for
Measurement Control and Communication (ISPCS), 2011, pp. 19 -24.
G. Wei-Xuan and Y. Shun-Zheng, “Inference of One-Way Queuing
Delay Distribution Using Packet-Pair Probes without Clock Synchro-
nization,” in IFIP International Conference on Network and Parallel
Computing Workshops (NPC Workshops), Sept. 2007, pp. 169 —175.

J. Levine, “Introduction to time and frequency metrology,” Review of
Scientific Instruments, vol. 70, no. 6, pp. 2567 —2596, June 1999.

A. Harrison and P. Newman, “TICSync: Knowing when things hap-
pened,” in IEEE International Conference on Robotics and Automation
(ICRA), May 2011, pp. 356 -363.

R. Schmidt and B. Fonville, “An NTP Stratum-One Server Farm Fed By
IEEE-1588,” in Annual Precise Time and Time Interval (PTTI) Meeting,
2010, pp. 111-126.

J. Ridoux and D. Veitch, “The Cost of Variability,” in International
IEEE Symposium on Precision Clock Synchronization for Measurement,
Control and Communication (ISPCS’08), Sep. 2008, pp. 29-32.

D. Veitch, J. Ridoux, and S. Korada, “Robust Synchronization of Ab-
solute and Difference Clocks Over Networks,” IEEE/ACM Transactions
on Networking, vol. 17, no. 2, pp. 417 —430, april 2009.

J. Ridoux and D. Veitch, “Ten Microseconds Over LAN, for Free
(Extended),” IEEE Transactions on Instrumentation and Measurement
(TIM), vol. 58, no. 6, pp. 1841-1848, June 2009.

J. Ridoux, D. Veitch, and T. Broomhead, “The Case for Feed-
Forward Clock Synchronization,” IEEE/ACM Transactions on Network-
ing, vol. PP, no. 99, pp. 1-12, 2011.

P. Ohly, D. Lombard, and K. Stanton, “Hardware assisted precision time
protocol. Design and case study,” in LCI International Conference on
High-Performance Clustered Computing, 2008.

P. Gongalves, X. Grandchamp, X. Pelorson, B. Raffin, A. Van Hirtum,
P. Vicat-Blanc, K.-i. Baba, J. Cisonni, Y. Ebara, K. Nozaki, H. Ohsaki,
S. Wada, T. Kawamura, K. Koyamada, E. Sakane, N. Sakamoto, and
S. Shimojo, “Petaflow - A Project Towards Information and Communi-
cation Technologies in Society,” in IEEE/IPSJ International Symposium
on Applications and the Internet (SAINT), 2010, pp. 347-350.

