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Abstract— The availability of hardware counters in computers

is essential both to the applications in charge of timekeeping,

and those in need of accurate timestamping. Newer counters

are now supported by open source operating systems, but the

access interfaces are unnecessarily restricted, and in particular

fail to satisfy the needs of feed-forward based synchronization

algorithms. In this paper we present modifications to the Linux

and FreeBSD kernels to enable any application to access all

available counters in an unrestricted way, and then evaluate their

stability, latency and robustness to stress. We demonstrate how

the feed-forward based RADclock can, through this interface,

make use of any of several counters, and achieve the same micro-

second synchronization with each.

Index Terms— RADclock, TSC, HPET, ACPI, time counters,

clock source, feed-forward, synchronization

I. MOTIVATION

For more than 20 years, the NTP daemon [1], [2] has been
the reference for designing computer clock synchronization
algorithms over networks. The core of its algorithm for
tracking the drift of a host computer’s clock is based on
feedback, more specifically an implementation of a PLL/FLL
(Phase/Frequency Lock Loop). In the same spirit, open source
operating system kernels provide support for feedback syn-
chronization algorithms by implementing the IETF RFC1589
standard [3]. This support, embodied by the gettimeofday()
and adjtime() system calls, inherently creates a feedback
loop between the kernel time adjusted by the synchronization
algorithm, and the timestamps fed to that same algorithm
based on the system clock maintained in the kernel.

While this approach has been successful in synchronizing
computers at the millisecond scale, the limits of a pure
feedback algorithm are apparent at the 10 micro-second scale.
The characteristic of the noise produced by network commu-
nication invalidates the default assumption that timestamps
are dominated by Gaussian noise with few spikes, and can
potentially seriously impair a feedback synchronization algo-
rithm [4].

The TSCclock [5], [6], [7], [8], [9], [10] is a particular
implementation of our Robust Absolute and Difference clock
(RADclock) algorithm capable of overcoming the limitations
of feedback algorithms in noisy environments such as network-
ing. The RADclock provides an absolute time and a difference
clock (a clock uncorrected for drift used to measure time
differences very accurately), each synchronized via a unique

feed-forward algorithm and a highly robust noise filter. The
RADclock is based on the availability of a raw hardware
counter which is continuously increasing and which does not
roll over. In particular, this is essential for the difference clock
and more generally for any feed-forward based processing of
the raw counter data.

As of today however, no operating system provides generic
support for such a counter. The timing support currently avail-
able in kernels is intrinsically tied to feedback applications. Up
until now, the TSCclock has circumvented this problem by
using the Time-Stamp Counter (TSC) that counts CPU cycles.
The TSC counter is 64 bits wide (it would take almost 200
years to roll over at today’s CPU frequencies), and it is readily
accessible with the few lines of assembly code composing the
rdtsc() function from either kernel or user space.

Unfortunately, in recent hardware architectures, features
such as power management, frequency stepping, and unsyn-
chronized multi-cores affect the stability and consistency of the
values returned by the rdtsc() function. Until a robust solution
is provided by CPU manufacturers, disabling these features
(when possible) is a short term solution for the TSC to be
used as a timekeeping and timestamping source, but it is not
realistic in a production environment.

Fortunately, the TSCclock is only one possible implemen-
tation of our RADclock algorithm, whose principles are not
bound to any particular hardware infrastructure and can be
used with any counter satisfying basic stability criteria. In this
paper we first present a set of kernel modifications that provide
support for applications relying on a feed-forward paradigm.
These modifications overcome the above limitations on the use
of the TSC counter by providing an interface to access any
hardware counter available on modern architectures. Using this
interface we then study the characteristic of the most promi-
nent modern counters present on computer motherboards and
compare their stability, latency and robustness under realistic
load and stress scenarios. Finally, we discuss the impact of
counter choice on RADclock performance, as well as on the
quality of RADclock timestamps accessible to applications.

II. KERNEL SUPPORT FOR FEED-FORWARD ALGORITHMS

Nowadays, personal computers embed the Time Stamp
Counter (TSC), the Advanced Configuration and Power In-
terface (ACPI) timer, and often the High Precision Event
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TSC HPET ACPI
Frequency CPU freq. 14.3 MHz 3.57 MHz
Size (bits) 64 32 / 64 24 / 32

TABLE I
COUNTER CHARACTERISTICS

Timer (HPET). These hardware counters are initialised to 0 at
system boot and incremented at the period of their respective
oscillators. Since each counter can be used for timekeeping,
the operating system selects the one it considers the most
reliable at boot time and provides an interface to access it.
This interface is named timecounter [11] on FreeBSD and
clocksource on Linux and is internal to the kernel.

With the exception of the TSC, the available counters
roll over several times per minute (see table I). The kernel
mechanism that tracks roll-over events, thereby maintaining a
consistent notion of time, works as follows. On every system,
the “hardware clock”1 generates interrupts that are captured
by the kernel (typically every 1 ms). On every interrupt, the
kernel creates two timestamps. One timestamp is the reading
of the current hardware counter value (counter record) and the
other is derived from the system clock (time record).

When a program issues a gettimeofday() system call, or
when an interrupt is raised by the hardware clock, the kernel
needs to create a system clock timestamp. To this end, the
kernel reads the current counter value and computes δ, the
number of cycles elapsed between the last counter record and
the current value. The kernel converts δ into seconds, adds it
to the last time record and returns the result. If the timestamp
creation was triggered by gettimeofday(), the timestamp is
passed back to user space. If it was triggered by a hardware
clock interrupt, the timestamp becomes the new time record
and the current counter reading the new counter record.

Because a monotonically increasing time record is associ-
ated to every counter record, this mechanism implicitly tracks
the counter’s roll-over events. It is also robust to hardware
clock interrupts being missed, since their frequency is far
higher than that of any counter roll-over. It is an intrinsically
feedback mechanism however, since the conversion of δ into
seconds is driven by the information passed by the synchro-
nization algorithm to the kernel via the adjtime() system call.

The kernel’s notion of time and the synchronization algo-
rithm are locked together. A feed-forward algorithm cannot
take advantage of the existing mechanism since the tracking
of the oscillator drift is already coupled to the timestamping
mechanism. A new mechanism is therefore required, and based
on our previous experience with the TSC counter, we know
that the ideal counter has to be wide enough not to roll over,
have high stability (run at very close to constant frequency)
and be accessible quickly and atomically.

Our implementation synthesizes such a counter. It consists
of a 64 bit cumulative counter record added to the timecounter
and clocksource interfaces. This 64 bit field is used to record
a snapshot of a cumulative count of the active counter and
because of its size, is guaranteed not to roll over. To allow user

1The hardware clock is usually based on the legacy 8254 Programmable
Interval Timer (PIT), the Real-Time Clock (RTC) or the HPET counter itself.
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Fig. 1. Stability of 4 counters based on PPS based polling in a: Top – desktop
computer (tastiger); Bottom – rack server (platypus).

space programs to access this counter, we also implemented a
new getcounter() system call.

When a program issues a getcounter() system call, or when
an interrupt is raised by the hardware clock, the kernel has
to determine the current cumulative counter value. The kernel
reads the current value of the counter and computes δ as in
the feedback case. The current cumulative counter value is
then created as the sum of δ and the last cumulative counter
record. In the case of triggering by getcounter(), the current
cumulative count is passed back to user space. If it was
triggered by a hardware clock interrupt, it is stored as the
new cumulative counter record.

This mechanism implements the simple yet crucial require-
ments for kernel support for feed-forward applications. It
decouples the timestamping and timekeeping mechanisms in
the kernel in an elegant manner while taking advantage of the
existing implementation, a feature that should ease its adoption
by the open source community. It is also generic enough to
give access to future hardware counters as soon as they are
supported by the timecounter or clocksource interfaces [12].
Finally, it gives access to consistent raw counter timestamps
via a new data structure available both from within the kernel
and to user space applications.
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Fig. 2. Instantaneous relative frequency error of each counter under CPU load and network interrupt stress scenario on the rack server possum.

III. COUNTER CHARACTERISTICS

In the following section, we compare the different counters
available and examine some of their key characteristics. For
this purpose we use recent computers that embed the TSC,
HPET and ACPI counters. We use a FreeBSD 7.0 system that
provides two access methods to the ACPI counter [13]. The
fast method simply reads the counter as quickly as possible.
The safe one is intended for ACPI architectures that may not
correctly latch the counter, and compensates for this defect by
reading the counter several times until a correct value is read,
making this method slower.

The characteristics we focus on are the key ones for feed-
forward synchronization algorithms, but the findings should
be useful for many applications requiring raw timestamps. As
far as we are aware this is the first study which systematically
compares these counters.

A. Stability
Our testbed at the University of Melbourne is equipped with

a PRS-10 rubidium oscillator whose Pulse-Per-Second (PPS)
signal is locked onto a Trimble Acutime Gold GPS receiver.
Using the FreeBSD PPS API [14], the kernel captures the
PRS-10 PPS signal through a serial port. On each pulse, a raw
64 bit cumulative counter timestamp is created from within the
kernel and exported and converted to seconds based on a long
term period estimate computed from the GPS receiver time.

This set-up enables us to observe the stability of each
counter when accessed via the timecounter interface. Figure 1
shows the Allan deviation of each counter measured over con-
secutive 1 week periods on a desktop computer (tastiger) and
a rack server (platypus) both located in the same temperature
controlled server room. In addition to the 4 counters which
we access via the timecounter interface, we also show the
TSC counter when accessed via the rdtsc() function both as
a point of reference, and to allow comparison to our previous
work [9].

Figure 1 shows that all the counters we observe exhibit a
stability below 1PPM at any timescale. It also clearly indicates
that on both test machines, all counters have very similar
characteristics. At small time scales, the variability of the
system noise due to the serial port dominates but quickly
falls below 0.1PPM. The counters exhibit then a familiar
minimum a little past 1000 seconds, before flattening out
to a low level at daily time scales and beyond, consistent

with a tightly controlled temperature environment. The only
differences between the counters are weak and appear at
large time scales, due to the weekly temperature variations
unavoidable in consecutive captures.

Interestingly, all counters on both test machines exhibit
a “bump” in the Allan deviation. The time scale of this
bump corresponds to the period of the air conditioning system
controlling the temperature in the server room. This periodic
change of temperature affects all counters in the same man-
ner. This is of interest for production environments that are
equipped with similar systems, and even if the impact of the
air conditioning system is noticeable it remains well below
0.1PPM. A similar bump was noted in [7].

In conclusion, the counters exhibit virtually identical stabil-
ity characteristics which are far better than their specification
and equivalently useful for the purpose of timekeeping.

B. Stability Under Stress
We now examine the response of each counter to a prede-

fined scenario. Starting in a stable environment, the computer
undergoes alternating 90 minute long periods of stressed and
normal conditions. In the first two stress periods, a user space
infinite loop continuously maintains the CPU activity over
95% of its capacity, allowing us to observe the counter’s
behaviour under heavy load. During the last stress period,
the computer network card is set in promiscuous mode and
a tcpdump process captures all packets transmitted over the
network. By generating heavy cross traffic (the 100Mb/s hub
the computer is connected to is loaded at maximum capacity),
the network card generates many interrupts on the system as
packets are captured.

Before running these tests the expectation was that the CPU
load stress would affect the TSC counter more than the others
since it is located on the CPU chip. Furthermore, it was
supposed that the generation of many interrupts would create
unequal contention for the counters’ access methods due to
their differing hardware design.

Using the PPS signal capture in the kernel, we compute
the number of cycles elapsed between two consecutive pulses,
giving us a direct estimate of the “instantaneous” frequency of
each counter. Using the “normal conditions” period of the test,
we compute a reference frequency for each counter. Figure 2
shows the error of the instantaneous frequency relative to the
respective reference frequency expressed in PPM. Each data
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set has been captured over a period of 11 hours on the rack
server machine possum. The captures occur sequentially but
are aligned in the plot relative to the beginning of each run of
the stress scenario.

Figure 2 indicates that our preconceptions were wrong: the
frequencies of all counters change in a comparable manner
when under stress. However, it points at temperature as a main
factor for frequency change. Under CPU load, the temperature
of the computer increases notably, while the creation of a
multitude of network interrupts induces a much milder temper-
ature change. The most probable explanation is that the crystal
and/or the clock synthesizer chip present on the computer
motherboard are affected by the temperature changes and as
a consequence all counters are affected in a similar manner.
The high frequency oscillations shown in Fig. 2 correspond
to the impact of the air conditioning system seen in the Allan
deviation earlier.

This result shows that all counters are equivalently stable
under heavy load. This experiment also reveals that even under
heavy load, the frequency variation remains below 1PPM,
a crucial result for server machines susceptible to carrying
out heavy computing tasks. Finally, we see that an extremely
heavy network activity has a very small impact on the counters,
an important feature for network intensive applications such
as network monitoring and network anomaly detection that are
dependent on packet capture and timestamping.

C. Latency Under Stress
While the counters have similar stability characteristics, they

have different access methods. The value of the TSC can be
returned extremely fast and accessing it requires few assembly
instructions2. The HPET and ACPI counters are accessed via
reading on a data bus and are regarded as providing slower
access. The HPET counter however, is memory mapped and
should therefore be faster than ACPI.

To unambiguously measure the latency of each counter, we
count the number of CPU cycles required to access a given
counter via the kernel interface. Using the fast rdtsc() func-
tion, and memory barriers to prevent instruction reordering,
consistent values of the TSC counter are read before and after
accessing the selected counter via the interface.

Figure 3 shows the latency of the counters expressed in
CPU cycles, a metric that is independent of CPU frequency
variations. As presented in section III-B, the computer has
been subject to the same stress scenario over periods of 11
hours, and the counter latency has been measured every 0.5 s.

The corresponding distributions of the latency for each
phase of the stress scenario are also presented in figure 3. Each
distribution is presented in a compact format where whiskers
show the minimum and 95th percentile values. The box lower
and upper sides show the 25th and 75th percentiles values,
while the internal horizontal line marks the median.

It is worth noting that the values shown here are effectively
the sum of the latency of the timecounter interface and the
latency of the counter itself. A we will discuss in the next
section, the former can accurately be modelled by a constant.

22 instructions on 32 bit CPU systems and 1 instruction on 64 bit systems.

We first look at the normal periods when the system is not
under stress. As expected, the TSC is the fastest counter and
the median access latency is 420 CPU cycles (less than 140 ns
on a 3GHz processor). The HPET counter comes second with
a median value of 1935 cycles (0.65 µs), and the ACPI is last
at about 3690 cycles in its fast mode (1.23 µs), and 10440
cycles in its safe mode (3.48 µs).

These initial results highlight the first difference between the
different counters. While showing similar stability characteris-
tics, the latency in accessing them can impact the performance
of the kernel timestamping mechanism. These values are far
from negligible since they reach the micro-second level even
when assuming a fast modern computer.

The variability of the latency to access the counters is small
however under normal condition. The Inter-Quartile Range
(IQR) for the TSC is essentially null because of the high
level of discretisation of the TSC reading that is architecture
dependent. HPET exhibits an IQR of 135 cycles, ACPI-
fast 285 cycles and ACPI-safe 390 cycles. Such a small
variability for all counters is an encouraging fact since it
essentially translates to a quasi-constant offset error for a clock
synchronization algorithm.

The periods when the computer is under stress show an
interesting pattern. As shown by their distributions in Fig.3
the counter latencies take lower values during the CPU test.
The median values all drop by about 100 cycles, a counter-
intuitive result: performance improvement under stress! The
explanation is not that the counters are accessed faster, but that
our measurement methodology has one flaw. While robust to
frequency changes, reading the number of CPU cycles is prone
to pipelining and caching optimisations. Under CPU load, the
caches are “hot” and the apparent performance improvement
is an artefact of this. For the same reason, the slightly lower
number of instructions to measure the latency of the counters
reduces the probability of the corresponding execution being
scheduled out, which then reduces the number of outliers.

In the case of the network stress periods, the results obtained
are extremely close to the normal ones. The only noticeable
difference concerns the extreme outliers. As shown by the
distributions of Fig. 3, their relative representation in the
measured data is equivalent to the normal case. However, the
corresponding latency values they take are much higher. In
other words, the same proportion of counter access code is
interrupted, but for much longer in the presence of network
interrupts. As an example, the maximum latency for HPET in
the normal case is 38265 cycles but 11874705 cycles under
network load. The TSC counter is an exception however.
Because the network stress is based on tcpdump, all incoming
packets are timestamped, leading to another “hot cache”
optimisation as the TSC counter is continuously accessed,
resulting in almost no outliers.

In summary, the reaction to the stress scenario is mild, and
almost identical, for each counter.

IV. RAW TIMESTAMPING AND SYNCHRONIZATION

The new kernel support for feed-forward synchronization
algorithms is a large improvement over the former TSC-
centric approach, as it provides a universal access to all
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Fig. 3. Counters access latency on FreeBSD for the 4 counters available, under the stress scenario. Time series (top) and corresponding distributions from
0 to 95th percentile.

available counters. The original approach however enjoyed the
advantage of quick access not only from the kernel but also
from user space.

A. Timecounter/Clocksource Timestamping Latency
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Fig. 4. In kernel timecounter interface latency (left), user space getcounter()
system call (right).

From a kernel perspective, we are first interested in quanti-
fying the overhead produced by the use of the timecounter
or clocksource interfaces compared to the original rdtsc()
function. For this purpose we implemented a kernel module
that performs two calls to the rdtsc() function, then reads
the TSC counter by using the interface, and then calls the
rdtsc() again. This provides us with the latency of the rdtsc()
function itself and the latency of the interface when reading
the TSC counter. By subtracting one from the other, we obtain
a measure of the latency of the timecounter interface alone.

Figure 4 shows that this latency has an extremely compact
distribution on FreeBSD. Also, with a minimum value of
180 cycles and a 99th percentile at 420 cycles, the spread
of the interface latency is 240 cycles, or only 80 ns on a
3GHz processor. For the purpose of software timestamping
and synchronization, the kernel interface latency can then be

approximated by its median value, namely 240 cycles. The
Linux kernel clocksource interface exhibited similar results.

In summary, using the new interface for kernel timestamping
adds an extremely small penalty compared to the original
rdtsc() function. Compared to the advantages it provides, it
is therefore a very attractive tool for this purpose.

B. User Space Timestamping Latency

A program running in user space that needs a timestamp
normally issues a gettimeofday() system call to access the
system clock. In the case of the original TSCclock, the same
program only needed to use the rdtsc() function to create a
raw TSC timestamp and convert it to seconds asynchronously.
The assembly code composing the rdtsc() function bypasses
any usual kernel/user space channel and provides comparable
performance whether from the kernel or user space.

The ACPI, HPET or other counters do not offer this option,
and the use of the timecounter or clocksource interface forces a
user program to issue a system call to retrieve a raw timestamp
from the kernel. Similarly to the kernel case, we compute the
latency of the new getcounter() system call we implemented
to capture raw timestamps from user space.

Figure 4 shows the distribution of the FreeBSD system call
latency, and this time, the penalty induced by our solution
becomes apparent. Whereas creating a raw timestamp based on
rdtsc() costed about 150 cycles from user space, it now costs
over 3500 cycles (almost 1.2 µs) and exhibits a distribution
whose variance cannot be ignored (similar results were found
on Linux). Even if the system was running with a perfect
software clock, the timestamps would consistently exhibit
errors above 1 µs on modern systems. This is even more
important for synchronization algorithms that themselves rely
on timestamps created on the system. For example, the ntpd
daemon relies on timestamps created in user space and as such
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is prone to such timestamping error. This again advocates for
the use of timestamps taken from within the kernel.

C. Synchronization Algorithm Performance
As a final result, we are now interested in the impact of

each counter on the RADclock, our synchronization algorithm.
Using the testbed and methodology described in [15] we are
able to compare the error of the RADclock against a clock on
a “DAG card”, which is a hardware clock synchronized to the
PPS signal of our PRS-10 atomic clock.

Figure 5 shows the distribution of the RADclock errors
using the original rdtsc() function and each counter through the
timecounter interface. Each distribution corresponds to one en-
tire week of captured data where the RADclock synchronizes
to a stratum-1 server on the LAN using the NTP protocol.
Note that the clock errors have each been corrected by a
common estimate of the (in general unavoidable) network and
host asymmetry bias as described in [15], in order to focus on
the error variability.

As expected from the results above on counter stability,
the RADclock performs extremely similarly irrespective of the
counter selected. The IQR of all clock errors are all at about
7 µs, a value dominated by the impact of the air conditioning
on the counters as also observed on our stratum-1 NTP servers
fed with our atomic clock PPS signal.

The median error values vary in a band only a couple of
micro-seconds wide. It is tempting to explain these variations
through the differences between counter latencies which are
of the same order of magnitude, however the slightly different
network noise characteristics of each capture, or the counters
stability at weekly timescales, are also possible causes.

Finally, we observed the impact of the stress scenario on
the performance of the RADclock. While the performance
of the synchronisation algorithm is affected by the extreme
temperature change and network activity, the performance is
similar for all counters used. The median clock errors of all
counters are at most 1.8 µs apart in the case of CPU load and
1.1 µs for network load. This result reinforces the previous
analysis and confirms that any counter under study is a valid
candidate for the purpose of timekeeping.

V. CONCLUSION

In this paper we presented a set of modifications to the
Linux and FreeBSD kernels to allow feed-forward applications

to access a raw 64 bit consistent counter for the purpose of
timestamping and timekeeping. Based on these modifications,
we showed that the hardware counters present in common
computers are extremely similar and are equally good can-
didates as the basis of timekeeping and timestamping if done
in kernel space. If timestamping is required from a user space
program, a small penalty applies due the use of the system
call interface that is identical to the use of gettimeofday().

We also demonstrated that our implementation of the RAD-
clock software clock can easily be configured to make use of
any of the hardware counters available through the above in-
terface. We showed that the RADclock achieves micro-second
level accuracy when synchronised over a LAN independently
of which counter is used.
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